3.19.14 \(\int \frac {\sqrt {1-2 x} (3+5 x)^2}{(2+3 x)^7} \, dx\) [1814]

3.19.14.1 Optimal result
3.19.14.2 Mathematica [A] (verified)
3.19.14.3 Rubi [A] (verified)
3.19.14.4 Maple [A] (verified)
3.19.14.5 Fricas [A] (verification not implemented)
3.19.14.6 Sympy [F(-1)]
3.19.14.7 Maxima [A] (verification not implemented)
3.19.14.8 Giac [A] (verification not implemented)
3.19.14.9 Mupad [B] (verification not implemented)

3.19.14.1 Optimal result

Integrand size = 24, antiderivative size = 148 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^2}{(2+3 x)^7} \, dx=-\frac {(1-2 x)^{3/2}}{378 (2+3 x)^6}+\frac {137 (1-2 x)^{3/2}}{4410 (2+3 x)^5}-\frac {1613 \sqrt {1-2 x}}{7560 (2+3 x)^4}+\frac {1613 \sqrt {1-2 x}}{158760 (2+3 x)^3}+\frac {1613 \sqrt {1-2 x}}{444528 (2+3 x)^2}+\frac {1613 \sqrt {1-2 x}}{1037232 (2+3 x)}+\frac {1613 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{518616 \sqrt {21}} \]

output
-1/378*(1-2*x)^(3/2)/(2+3*x)^6+137/4410*(1-2*x)^(3/2)/(2+3*x)^5+1613/10890 
936*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-1613/7560*(1-2*x)^(1/2)/( 
2+3*x)^4+1613/158760*(1-2*x)^(1/2)/(2+3*x)^3+1613/444528*(1-2*x)^(1/2)/(2+ 
3*x)^2+1613/1037232*(1-2*x)^(1/2)/(2+3*x)
 
3.19.14.2 Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.51 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^2}{(2+3 x)^7} \, dx=\frac {\frac {21 \sqrt {1-2 x} \left (-3136864-7772840 x+1791558 x^2+14197626 x^3+8056935 x^4+1959795 x^5\right )}{2 (2+3 x)^6}+8065 \sqrt {21} \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{54454680} \]

input
Integrate[(Sqrt[1 - 2*x]*(3 + 5*x)^2)/(2 + 3*x)^7,x]
 
output
((21*Sqrt[1 - 2*x]*(-3136864 - 7772840*x + 1791558*x^2 + 14197626*x^3 + 80 
56935*x^4 + 1959795*x^5))/(2*(2 + 3*x)^6) + 8065*Sqrt[21]*ArcTanh[Sqrt[3/7 
]*Sqrt[1 - 2*x]])/54454680
 
3.19.14.3 Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.17, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {100, 27, 87, 51, 52, 52, 52, 73, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {1-2 x} (5 x+3)^2}{(3 x+2)^7} \, dx\)

\(\Big \downarrow \) 100

\(\displaystyle \frac {1}{378} \int \frac {3 \sqrt {1-2 x} (1050 x+563)}{(3 x+2)^6}dx-\frac {(1-2 x)^{3/2}}{378 (3 x+2)^6}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{126} \int \frac {\sqrt {1-2 x} (1050 x+563)}{(3 x+2)^6}dx-\frac {(1-2 x)^{3/2}}{378 (3 x+2)^6}\)

\(\Big \downarrow \) 87

\(\displaystyle \frac {1}{126} \left (\frac {1613}{5} \int \frac {\sqrt {1-2 x}}{(3 x+2)^5}dx+\frac {137 (1-2 x)^{3/2}}{35 (3 x+2)^5}\right )-\frac {(1-2 x)^{3/2}}{378 (3 x+2)^6}\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {1}{126} \left (\frac {1613}{5} \left (-\frac {1}{12} \int \frac {1}{\sqrt {1-2 x} (3 x+2)^4}dx-\frac {\sqrt {1-2 x}}{12 (3 x+2)^4}\right )+\frac {137 (1-2 x)^{3/2}}{35 (3 x+2)^5}\right )-\frac {(1-2 x)^{3/2}}{378 (3 x+2)^6}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {1}{126} \left (\frac {1613}{5} \left (\frac {1}{12} \left (\frac {\sqrt {1-2 x}}{21 (3 x+2)^3}-\frac {5}{21} \int \frac {1}{\sqrt {1-2 x} (3 x+2)^3}dx\right )-\frac {\sqrt {1-2 x}}{12 (3 x+2)^4}\right )+\frac {137 (1-2 x)^{3/2}}{35 (3 x+2)^5}\right )-\frac {(1-2 x)^{3/2}}{378 (3 x+2)^6}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {1}{126} \left (\frac {1613}{5} \left (\frac {1}{12} \left (\frac {\sqrt {1-2 x}}{21 (3 x+2)^3}-\frac {5}{21} \left (\frac {3}{14} \int \frac {1}{\sqrt {1-2 x} (3 x+2)^2}dx-\frac {\sqrt {1-2 x}}{14 (3 x+2)^2}\right )\right )-\frac {\sqrt {1-2 x}}{12 (3 x+2)^4}\right )+\frac {137 (1-2 x)^{3/2}}{35 (3 x+2)^5}\right )-\frac {(1-2 x)^{3/2}}{378 (3 x+2)^6}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {1}{126} \left (\frac {1613}{5} \left (\frac {1}{12} \left (\frac {\sqrt {1-2 x}}{21 (3 x+2)^3}-\frac {5}{21} \left (\frac {3}{14} \left (\frac {1}{7} \int \frac {1}{\sqrt {1-2 x} (3 x+2)}dx-\frac {\sqrt {1-2 x}}{7 (3 x+2)}\right )-\frac {\sqrt {1-2 x}}{14 (3 x+2)^2}\right )\right )-\frac {\sqrt {1-2 x}}{12 (3 x+2)^4}\right )+\frac {137 (1-2 x)^{3/2}}{35 (3 x+2)^5}\right )-\frac {(1-2 x)^{3/2}}{378 (3 x+2)^6}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {1}{126} \left (\frac {1613}{5} \left (\frac {1}{12} \left (\frac {\sqrt {1-2 x}}{21 (3 x+2)^3}-\frac {5}{21} \left (\frac {3}{14} \left (-\frac {1}{7} \int \frac {1}{\frac {7}{2}-\frac {3}{2} (1-2 x)}d\sqrt {1-2 x}-\frac {\sqrt {1-2 x}}{7 (3 x+2)}\right )-\frac {\sqrt {1-2 x}}{14 (3 x+2)^2}\right )\right )-\frac {\sqrt {1-2 x}}{12 (3 x+2)^4}\right )+\frac {137 (1-2 x)^{3/2}}{35 (3 x+2)^5}\right )-\frac {(1-2 x)^{3/2}}{378 (3 x+2)^6}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{126} \left (\frac {1613}{5} \left (\frac {1}{12} \left (\frac {\sqrt {1-2 x}}{21 (3 x+2)^3}-\frac {5}{21} \left (\frac {3}{14} \left (-\frac {2 \text {arctanh}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{7 \sqrt {21}}-\frac {\sqrt {1-2 x}}{7 (3 x+2)}\right )-\frac {\sqrt {1-2 x}}{14 (3 x+2)^2}\right )\right )-\frac {\sqrt {1-2 x}}{12 (3 x+2)^4}\right )+\frac {137 (1-2 x)^{3/2}}{35 (3 x+2)^5}\right )-\frac {(1-2 x)^{3/2}}{378 (3 x+2)^6}\)

input
Int[(Sqrt[1 - 2*x]*(3 + 5*x)^2)/(2 + 3*x)^7,x]
 
output
-1/378*(1 - 2*x)^(3/2)/(2 + 3*x)^6 + ((137*(1 - 2*x)^(3/2))/(35*(2 + 3*x)^ 
5) + (1613*(-1/12*Sqrt[1 - 2*x]/(2 + 3*x)^4 + (Sqrt[1 - 2*x]/(21*(2 + 3*x) 
^3) - (5*(-1/14*Sqrt[1 - 2*x]/(2 + 3*x)^2 + (3*(-1/7*Sqrt[1 - 2*x]/(2 + 3* 
x) - (2*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/(7*Sqrt[21])))/14))/21)/12))/5)/ 
126
 

3.19.14.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 87
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[(-(b*e - a*f))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p 
+ 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p 
+ 1)))/(f*(p + 1)*(c*f - d*e))   Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] 
/; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || Intege 
rQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ[p, n]))))
 

rule 100
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^( 
p_), x_] :> Simp[(b*c - a*d)^2*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d 
*e - c*f)*(n + 1))), x] - Simp[1/(d^2*(d*e - c*f)*(n + 1))   Int[(c + d*x)^ 
(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*( 
p + 1)) - 2*a*b*d*(d*e*(n + 1) + c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ[n, -1] || (EqQ[n 
 + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] ||  !SumSimplerQ[p, 1])))
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 
3.19.14.4 Maple [A] (verified)

Time = 2.98 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.45

method result size
risch \(-\frac {3919590 x^{6}+14154075 x^{5}+20338317 x^{4}-10614510 x^{3}-17337238 x^{2}+1499112 x +3136864}{5186160 \left (2+3 x \right )^{6} \sqrt {1-2 x}}+\frac {1613 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{10890936}\) \(66\)
pseudoelliptic \(\frac {16130 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \left (2+3 x \right )^{6} \sqrt {21}+21 \sqrt {1-2 x}\, \left (1959795 x^{5}+8056935 x^{4}+14197626 x^{3}+1791558 x^{2}-7772840 x -3136864\right )}{108909360 \left (2+3 x \right )^{6}}\) \(70\)
derivativedivides \(\frac {-\frac {14517 \left (1-2 x \right )^{\frac {11}{2}}}{19208}+\frac {27421 \left (1-2 x \right )^{\frac {9}{2}}}{2744}-\frac {53229 \left (1-2 x \right )^{\frac {7}{2}}}{980}+\frac {113751 \left (1-2 x \right )^{\frac {5}{2}}}{980}-\frac {86837 \left (1-2 x \right )^{\frac {3}{2}}}{1512}-\frac {11291 \sqrt {1-2 x}}{216}}{\left (-4-6 x \right )^{6}}+\frac {1613 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{10890936}\) \(84\)
default \(\frac {-\frac {14517 \left (1-2 x \right )^{\frac {11}{2}}}{19208}+\frac {27421 \left (1-2 x \right )^{\frac {9}{2}}}{2744}-\frac {53229 \left (1-2 x \right )^{\frac {7}{2}}}{980}+\frac {113751 \left (1-2 x \right )^{\frac {5}{2}}}{980}-\frac {86837 \left (1-2 x \right )^{\frac {3}{2}}}{1512}-\frac {11291 \sqrt {1-2 x}}{216}}{\left (-4-6 x \right )^{6}}+\frac {1613 \,\operatorname {arctanh}\left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{10890936}\) \(84\)
trager \(\frac {\left (1959795 x^{5}+8056935 x^{4}+14197626 x^{3}+1791558 x^{2}-7772840 x -3136864\right ) \sqrt {1-2 x}}{5186160 \left (2+3 x \right )^{6}}-\frac {1613 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right ) x -5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{21781872}\) \(87\)

input
int((3+5*x)^2*(1-2*x)^(1/2)/(2+3*x)^7,x,method=_RETURNVERBOSE)
 
output
-1/5186160*(3919590*x^6+14154075*x^5+20338317*x^4-10614510*x^3-17337238*x^ 
2+1499112*x+3136864)/(2+3*x)^6/(1-2*x)^(1/2)+1613/10890936*arctanh(1/7*21^ 
(1/2)*(1-2*x)^(1/2))*21^(1/2)
 
3.19.14.5 Fricas [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.88 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^2}{(2+3 x)^7} \, dx=\frac {8065 \, \sqrt {21} {\left (729 \, x^{6} + 2916 \, x^{5} + 4860 \, x^{4} + 4320 \, x^{3} + 2160 \, x^{2} + 576 \, x + 64\right )} \log \left (\frac {3 \, x - \sqrt {21} \sqrt {-2 \, x + 1} - 5}{3 \, x + 2}\right ) + 21 \, {\left (1959795 \, x^{5} + 8056935 \, x^{4} + 14197626 \, x^{3} + 1791558 \, x^{2} - 7772840 \, x - 3136864\right )} \sqrt {-2 \, x + 1}}{108909360 \, {\left (729 \, x^{6} + 2916 \, x^{5} + 4860 \, x^{4} + 4320 \, x^{3} + 2160 \, x^{2} + 576 \, x + 64\right )}} \]

input
integrate((3+5*x)^2*(1-2*x)^(1/2)/(2+3*x)^7,x, algorithm="fricas")
 
output
1/108909360*(8065*sqrt(21)*(729*x^6 + 2916*x^5 + 4860*x^4 + 4320*x^3 + 216 
0*x^2 + 576*x + 64)*log((3*x - sqrt(21)*sqrt(-2*x + 1) - 5)/(3*x + 2)) + 2 
1*(1959795*x^5 + 8056935*x^4 + 14197626*x^3 + 1791558*x^2 - 7772840*x - 31 
36864)*sqrt(-2*x + 1))/(729*x^6 + 2916*x^5 + 4860*x^4 + 4320*x^3 + 2160*x^ 
2 + 576*x + 64)
 
3.19.14.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-2 x} (3+5 x)^2}{(2+3 x)^7} \, dx=\text {Timed out} \]

input
integrate((3+5*x)**2*(1-2*x)**(1/2)/(2+3*x)**7,x)
 
output
Timed out
 
3.19.14.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.99 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^2}{(2+3 x)^7} \, dx=-\frac {1613}{21781872} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) - \frac {1959795 \, {\left (-2 \, x + 1\right )}^{\frac {11}{2}} - 25912845 \, {\left (-2 \, x + 1\right )}^{\frac {9}{2}} + 140843934 \, {\left (-2 \, x + 1\right )}^{\frac {7}{2}} - 300985146 \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} + 148925455 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + 135548455 \, \sqrt {-2 \, x + 1}}{2593080 \, {\left (729 \, {\left (2 \, x - 1\right )}^{6} + 10206 \, {\left (2 \, x - 1\right )}^{5} + 59535 \, {\left (2 \, x - 1\right )}^{4} + 185220 \, {\left (2 \, x - 1\right )}^{3} + 324135 \, {\left (2 \, x - 1\right )}^{2} + 605052 \, x - 184877\right )}} \]

input
integrate((3+5*x)^2*(1-2*x)^(1/2)/(2+3*x)^7,x, algorithm="maxima")
 
output
-1613/21781872*sqrt(21)*log(-(sqrt(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*s 
qrt(-2*x + 1))) - 1/2593080*(1959795*(-2*x + 1)^(11/2) - 25912845*(-2*x + 
1)^(9/2) + 140843934*(-2*x + 1)^(7/2) - 300985146*(-2*x + 1)^(5/2) + 14892 
5455*(-2*x + 1)^(3/2) + 135548455*sqrt(-2*x + 1))/(729*(2*x - 1)^6 + 10206 
*(2*x - 1)^5 + 59535*(2*x - 1)^4 + 185220*(2*x - 1)^3 + 324135*(2*x - 1)^2 
 + 605052*x - 184877)
 
3.19.14.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.89 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^2}{(2+3 x)^7} \, dx=-\frac {1613}{21781872} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {1959795 \, {\left (2 \, x - 1\right )}^{5} \sqrt {-2 \, x + 1} + 25912845 \, {\left (2 \, x - 1\right )}^{4} \sqrt {-2 \, x + 1} + 140843934 \, {\left (2 \, x - 1\right )}^{3} \sqrt {-2 \, x + 1} + 300985146 \, {\left (2 \, x - 1\right )}^{2} \sqrt {-2 \, x + 1} - 148925455 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 135548455 \, \sqrt {-2 \, x + 1}}{165957120 \, {\left (3 \, x + 2\right )}^{6}} \]

input
integrate((3+5*x)^2*(1-2*x)^(1/2)/(2+3*x)^7,x, algorithm="giac")
 
output
-1613/21781872*sqrt(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt( 
21) + 3*sqrt(-2*x + 1))) + 1/165957120*(1959795*(2*x - 1)^5*sqrt(-2*x + 1) 
 + 25912845*(2*x - 1)^4*sqrt(-2*x + 1) + 140843934*(2*x - 1)^3*sqrt(-2*x + 
 1) + 300985146*(2*x - 1)^2*sqrt(-2*x + 1) - 148925455*(-2*x + 1)^(3/2) - 
135548455*sqrt(-2*x + 1))/(3*x + 2)^6
 
3.19.14.9 Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.85 \[ \int \frac {\sqrt {1-2 x} (3+5 x)^2}{(2+3 x)^7} \, dx=\frac {1613\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{10890936}-\frac {\frac {11291\,\sqrt {1-2\,x}}{157464}+\frac {86837\,{\left (1-2\,x\right )}^{3/2}}{1102248}-\frac {4213\,{\left (1-2\,x\right )}^{5/2}}{26460}+\frac {17743\,{\left (1-2\,x\right )}^{7/2}}{238140}-\frac {27421\,{\left (1-2\,x\right )}^{9/2}}{2000376}+\frac {1613\,{\left (1-2\,x\right )}^{11/2}}{1555848}}{\frac {67228\,x}{81}+\frac {12005\,{\left (2\,x-1\right )}^2}{27}+\frac {6860\,{\left (2\,x-1\right )}^3}{27}+\frac {245\,{\left (2\,x-1\right )}^4}{3}+14\,{\left (2\,x-1\right )}^5+{\left (2\,x-1\right )}^6-\frac {184877}{729}} \]

input
int(((1 - 2*x)^(1/2)*(5*x + 3)^2)/(3*x + 2)^7,x)
 
output
(1613*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/10890936 - ((11291*(1 
- 2*x)^(1/2))/157464 + (86837*(1 - 2*x)^(3/2))/1102248 - (4213*(1 - 2*x)^( 
5/2))/26460 + (17743*(1 - 2*x)^(7/2))/238140 - (27421*(1 - 2*x)^(9/2))/200 
0376 + (1613*(1 - 2*x)^(11/2))/1555848)/((67228*x)/81 + (12005*(2*x - 1)^2 
)/27 + (6860*(2*x - 1)^3)/27 + (245*(2*x - 1)^4)/3 + 14*(2*x - 1)^5 + (2*x 
 - 1)^6 - 184877/729)